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Abstract. Water losses have a high environmental impact in terms of natural resources depletion (water, 

energy, ecosystems). This work aims at developing an airborne water leak detection surveillance service to 

provide water utilities with adequate information on leaks in water transportation mains outside urban areas. 

As a first step, a series of measurement campaigns were performed with hyperspectral cameras and a thermal 

infrared camera for selecting the most appropriate wavelengths and combinations thererof for revealing at 

best high moisture areas and artificial leaks. Further measurements will be performed with thereby optimized 

instrumentation onboard a plane and a UAV in an operational environment. 
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1 Introduction 

Detection of water leaks in transmission systems for water supply, irrigation, and hydropower plays 

a key role in water management efforts to mitigate natural resources depletion, decrease the related 

energy consumption required in the process and help utilities in providing services more cost-

effectively. Improved leak management could boost the network efficiency obtaining significant 

environmental benefits since, in some places of Europe, as much as 50% of water resources are 

being lost before they reach the tap. Leaks in large-diameter pipelines for water transportation are 

estimated to make up less than 5% of the total number of leaks, yet they can account for more than 

50% of the total water loss. To date, water leakage detection has been carried out by a number of 

ground techniques that typically involve measurement of pressure differences between two valves, 

acoustic sounding and ground penetrating radar. However, contrarily to leak detection in 

distribution pipes, the use of ground methods is difficult and often inadequate for water 

transmission mains, especially out of urban area. There is a strong need for developing surveillance 

methods that will offer an efficient and cost-effective way for pipeline monitoring. In addition to 

underground transportation means, the problem of water leaks also affects open canals in which 

case they are presented as seepage in the embankments. 

In the close vicinity of a water leak, thanks to the joint effect of water diffusion and capillarity, soil 

moisture increases up to the surface. On the other side, in case where vegetation is present, a higher 

amount of water in the root zone has direct consequences on the water content in the vegetation 

canopy and the plant vigour. All together, it is expected that underground leaks will induce an 

enhancement of water presence at the upper surface of the soil/vegetation complex. 

Remote sensing provides powerful means for large-scale characterization and monitoring of soil 

moisture close to the land surface. Depending on the considered spectral band, optical remote 

sensing relies on variations in optical reflectance or variations in thermal emission. Optical 
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reflectance changes with the water content for both soil and vegetation (e.g. wet soils look darker). 

In the first case, the optical signal provides information on the moisture in the upper layer of the 

soil, whereas in the second case, the optical signal gives indication on the leaf water content and 

thereby, indirectly, on the root-zone soil moisture. On the other side, thermal emission depends on 

surface emissivity and surface temperature (for natural surfaces, the emissivity is generally very 

high, close to 1). Surface temperature is conditioned by heat exchanges with the atmosphere as well 

as by the thermal properties of the underlying material. Water present in soil or vegetation generates 

latent heat losses through evaporation, resp. transpiration. In the same time, since it induces an 

increase of the thermal effusivity of soil and the heat capacity of vegetation, it dampens the 

amplitude of the temperature variations caused by the variations of the atmosphere forcing (e.g. 

day-night variations of the radiative flux). It is thus expected that, during a sunny day, moist sites 

should show a lower radiance temperature as compared to drier sites, whereas after sunset and 

before dawn one should observe the opposite [1]. Based on this interpretation, a large number of 

remote sensing experiments involving thermal infrared (TIR) sensors have been conducted for 

assessing the moisture state at the Earth’s surface or the evaporation rate over vegetated lands. 

Airborne TIR has been considered for water leaks and seepage detection along aqueducts, canals, 

and dikes for more than thirty years [2-9]. In some instances, TIR was considered alone [2, 3, 7] 

however the detection accuracy was quite low (numerous false positives). Misinterpretations were 

commonly caused by dense natural vegetation, shadows, farm canals or drainage ditches adjacent to 

the main canal, small holding ponds or low depression areas of natural drainage. To reduce 

misinterpretations, TIR was combined with images obtained from visible and NIR cameras [6], 

from multispectral or hyperspectral cameras [4, 8, 9], from satellite imagery like Landsat TM [5] or 

Google Earth [8]. The additional visible-to-SWIR spectral bands were used as standalone 

information or they have been fused for providing various indicators like well-known vegetation 

indices or moisture indices (NDVI, MSAVI, CRI, SRWI, WBI, NIRRR, etc...) [9]. Images of the 

vegetation index NDVI could help differentiating the tree and shadow from nearby seepage areas 

whereas the thermal image alone could not [6]. 

A synergetic use of TIR and VIS-NIR data like in the Triangle Method may yield more robust water 

leak detection along water pipes and aqueducts. This approach actually originates from satellite 

remote sensing. It consists in combining the apparent temperature and a vegetation index like 

NDVI. When plotting the temperature and the NDVI for all pixels over an area presenting a broad 

diversity both in cover fraction and in humidity, a scatterplot with a roughly triangular shape is 

obtained, whence the name: the Triangle Method [10-22]. Note that the vertex of the triangle is 

often truncated, giving a trapezoidal shape. A water index is then assigned to each point from its 

relative position with respect to the “wet” edge and the “dry” edge of the triangle/trapezoid [10-14]. 

More involved approaches consist in using a SVAT model (Soil Vegetation Atmosphere Transfer) 

in combination with the triangular scatterplot [11, 13, 15]. More recent works considered a 

supplementary parameter or index (albedo [16-18] or CAI-Cellulose Absorption Index [17-18]) in 

order to remove ambiguities appearing when both soil and vegetation experience large reflectance 

variations. Most of the time, the Triangle/trapezoid method has been applied to satellite images, 

hence providing soil moisture maps at low resolution (100-500m) [12-14]. Applications to airborne 

remote sensing data for getting information on moisture at a higher resolution (1-5m) are less 

common [15, 17-22]. They actually reveal higher difficulties, one of them being the surface 

heterogeneity exacerbated by the higher resolution sensors; as a consequence, it imposes a higher 

demand on the accuracy of the image registration process.  

One of the objectives of present work is to evaluate the applicability of the temperature/Vegetation 

Index (VI) space (i.e. the triangle/trapezoid method) in a water leak detection method based on 

airborne data. It has been compared to other spectral indices built upon signals in VNIR (0.5-1µm) 

and SWIR (1-2.6µm) spectral bands. Among them are WISOIL [23], NSMI [24], NINSOL and 
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NINSON [25, 26] which have been proposed for sensing soil moisture. We also considered WBI 

[27, 28], NDWI [28-30] and SRWI [28] which have been suggested to map the vegetation water 

content. CAI (Cellulose Absorption Index), which is an index suitable for quantifying the fraction 

of senescent vegetation [31], is expected to provide an indication on water leaks as well. More 

recently, a triangle/trapezoid method has been proposed where temperature is replaced by a spectral 

index obtained from a single optical reflectance measurement, namely at 1.6µm or at 2.2µm [32]. 

A comparison will be made of the results obtained by applying the former methods on a series of 

natural wet areas and on artificial leaks. They will help upon selecting the most appropriate 

wavelengths for an optimised multiwavelength system aimed to airplane or UAV remote sensing 

detection of water leaks. 

2 Methods 

Airborne measurements were conducted over several areas belonging to the water network 

infrastructure provided by SCP (Société du Canal de Provence – France) with ONERA’s aerial 

platform (BUSARD) instrumented with two hyperspectral VNIR and SWIR cameras (Hyspex) and 

a microbolometer infrared camera (FLIR A325 or FLIR A655sc 7.5-12µm). They have led to the 

development of a database from which the relevant physical parameters (soil/vegetation brightness 

temperature, spectral reflectances…) have been extracted. 

A first area, Esparron, was selected where SCP operating center has been alerted about a high 

moisture area not far from the pipe location. Three other sites have also been selected where 

artificial water leaks were introduced (Le Tholonet, Vauvenargues and Rians): new secondary pipes 

have been connected to the existing main pipe and buried at a depth of about 1m; the connection 

with the existing pipe was equipped with a valve, a flow meter, a recorder and a pressure regulator; 

calibrated holes have been drilled in the added pipes to generate leakages. In the site of Le 

Tholonet, a reference zone with a similar dig-work but without any buried pipe was added in order 

to be able to discriminate between dig-work effects and leak effects. Soil moisture in the 5cm upper 

layer was measured during the flights with a portable FDR probe. 

Three campaigns were performed in February, April and July 2017; in this paper we will discuss the 

results obtained in the first period. 

The hyperspectral images were orthorectified based on DEMs and GPS+IMU data (IMAR itrace 

F200). The calibrated radiance images were then corrected from atmosphere attenuation and 

translated into reflectance images. On the other side, the image sequences provided by the focal 

plane TIR camera were processed with the Correlator3D software (Simactive) to yield ortho-images 

and then ortho-mosaics. The coregistration of the metaimages originating from the different 

cameras (VNIR, SWIR, TIR) was performed by GeFolki software that has been recently developed 

at ONERA for the specific application of coregistration of heterogeneous images [33]. 

The water indexes listed in § 1 could then be computed by combining different wavelength images. 

On the other hand, the empirical Triangle/Trapezoid method according to [12] was implemented by 

using either NDVI or OSAVI for the vegetation index. The latter index is expected to be better 

immune to the spectral variations of bare soil and hence better correlated to the cover fraction [34]. 

3 Results 

The first three figures describe the results obtained over the Esparron area by applying the T-VI 

Triangle/trapezoid method while using OSAVI as vegetation index (fig. 1-left). Since in February 

the vegetation is either absent, senescent or still dormant, the OSAVI map presents quite low 

values, except over one field at left and over the trees. Interestingly, the thermal infrared image (fig. 

1-right) presents a triangular dark area in the top-right part which roughly corresponds to a couple 

of fields where standing water had been detected from time to time over the past years. The two-

dimensional distribution of the normalized brightness temperature and vegetation index (OSAVI) is 
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in fig. 2-left. The cold/wet edge (blue) and the warm/dry edge (red) have been positioned so that the 

trapezoid figure contains essentially all the scatter, except maybe a few outliers. The relative 

distance of each dot to the dry edge defines the so-called water index (WI) which is reported in fig. 

2-right. WI ranges from 0 to 1. A high value of WI, which is reported in blue colour in the image, 

means that soil moisture is at the highest for the considered VI level. One can notice that the 

triangular area in fig. 1-right showing low temperature is related to a high WI. A close-up is 

reported in Fig. 3-left where we added the water pipe and two areas over which the average signal 

and the standard deviation will be computed; this will provide a contrast to noise ratio (C/N) to be 

compared with the other spectral methods. 

 

Figure 1: Left: map of the Vegetation Index OSAVI over the “Esparron” test site. Right : Thermal Infrared 

mosaic (TIR) (dark/clear pixels correspond to low/high brightness temperature). 
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Figure 2: Left: 2D scatterplot of Vegetation Index (VI) vs. normalized brightness temperature. The wet/cold 

edge is in blue; the dry/warm edge is in red. Right: Inferred map of the water index WI. 

       

Figure 3: Left: Close-up of the top-right part of the water index map showing the pipe location. The “wet” 

area corresponds to a puddle located just north to the pipe (picture in Fig. 3-right). The “dry” area is an uphill 

well-drained field taken as reference. 

The “wet” area was chosen just north to the pipe where a puddle was detected amidst meadow (see 

Fig. 3–right). The triangular dark blue area corresponds to a depression extending downstream. The 
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field just uphill on the left was covered with meadow as well and was chosen as a reference “dry” 

area. C/N reached 5.6 in the TIR image and a very small value of 0.3 or 0.8 in the OSAVI, resp. 

NDVI image. After processing the triangle method we get a C/N value of 6 or 6.1 when using 

OSAVI, resp. NDVI. We then infer that the main information about soil moisture is in the TIR 

image. Processing the T-VI scatterplot still improves slightly the result; however, using OSAVI or 

NDVI does not change significantly the final result. 

We provide in fig. 4 the images obtained when processing mNINSON index (i.e. minus NINSON 

since NINSON is anti-correlated with soil moisture [25]) and n|CAI| index(i.e. the normalized 

absolute value of CAI index; CAI roughly represents the curvature of the reflectance spectrum 

between 2.0µm and 2.2µm, which is of opposite sign for dry soils and stressed/senescent 

vegetation, whereas it is close to 0 for wet soils and well-watered vegetation [31]). 

  

Figure 4: Maps over the same area as in Fig. 3-left for mNINSON (left) and n|CAI| (right). High moisture is 

expected to be revealed by high values of mNINSON and for values of n|CAI| close to 0. A wavy horizontal 

line (it is doubled in the right image), not seen in Fig. 3-left, comes from an artefact in the SWIR images; it 

doesn’t affect the C/N computation in Fig. 5. 

In Fig. 5 we can compare the C/N obtained from a series of 22 images corresponding to a spectral 

signal (TIR), various indexes (reflectance ratios or normalized differences) claimed to give 

information on soil moisture, on water in vegetation, or simply on the vegetation state. Different 

colours have been displayed depending on the considered spectral regions.  

 

Figure 5: Contrast to noise ratio = contrast between “wet” and “dry” areas divided by the mean standard 

deviation of the signal (see fig. 3-left). The information is extracted from index maps based on optical signals 

in the VNIR spectrum (orange bars), in the VNIR+SWIR spectra (green bars), in the SWIR spectrum alone 

(red bars), in TIR spectrum (blue bar), and in VNIR+TIR spectra (purple bars). 

Indexes obtained with VNIR signals alone provide very poor results: the contrast is lower than the 

mean variability in the two areas “dry” and “wet”. The contrast seen in the PWI image is even of 

opposite sign of what is expected. One should combine VNIR with SWIR or use SWIR signals 

alone to get better results. For getting a C/N higher than 3 one should use NSMI, NINSOL, 

NINSON, CAI or any of the four variants that we considered when applying the “optical trapezoid 
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method” described in [32]. However, the best results (i.e. C/N>5) are obtained with n|CAI| and with 

the thermal infrared data, let it be with the TIR signal alone or, slightly better, by combining it with 

NDVI or OSAVI through the triangle/trapezoid method. 

The pipe in the Esparron area was finally checked for leaks with ultrasounds, but none was found. 

Hence, the water that was seen in the “wet” area should have a natural origin (groundwater 

exfiltration). 

The same spectral analysis was performed over three areas containing artificial leaks. Fig. 7 and 8 

are close-ups of the water index maps obtained in these areas by applying the T-VI 

Triangle/trapezoid method. In Le Tholonet (Fig. 7) a significant thermal contrast was observed over 

an area 13m x 31m wide encompassing a buried pipe PEHD DN50 leaking through a 10mm 

diameter hole and another control area (filled trench without pipe). The infrared camera has 

detected the water leak and the water spreading. On the opposite, no contrast was observed in the 

images obtained with the other indexes leveraging VNIR, SWIR or VNIR+SWIR signals alone. 

     

Figure 7: Water index map as obtained with the T-VI trapezoid method (OSAVI+TIR) over the Le Tholonet 

site. The area with an artificial leak is indicated in red. The left white indentation corresponds to a bare soil 

area containing a buried pipe with a 10mm hole (see picture at right). The right indentation corresponds to a 

control area (bare soil) with no pipe. Water has diffused away from the leak spot (dark blue zone with high 

water index) and reached the control area. 

 

Figure 8: Same over the Vauvenargues site (left) and Rians site (right). In both cases a pipe with artificial 

leaks has been connected to a water means and buried. The corresponding signature revealed by a higher 

water index (dark blue tone) is indicated with red ellipses. 

About the same occurred in the Vauvenargues site where a pipe PEHD DN40 with four holes 5 or 

10 mm diam., 15m apart, was buried: all indices except the thermal-based one showed no contrast 

over the position of the leaking pipe. On the opposite, in the T-VI image (Fig. 8-left), a contrast 

could be detected, albeit quite faint.  
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In the Rians site, a pipe PEHD DN32 was buried with two holes 10 mm diam., 15m apart. The 

thermal signature in the T-VI water index image was much clearer (see Fig. 8-right). A contrast 

could also be seen, albeit with a lower intensity, in the images obtained with the optical trapezoid 

method (OSAVI-SWIR or NDVI-SWIR [32]). Interestingly, the location of the buried pipe could 

also be seen in the mNINSOL, mNINSON, |CAI], and n|CAI| images; however the contrast was of 

opposite sign to what was expected: this would be wrongly interpreted that the soil is drier than in 

the surroundings! One possible explanation could be that because the soil was recently worked, the 

optical properties of the surface in the SWIR spectrum had evolved and this change is more 

important than the one induced by a mere moisture change. 

4 Conclusion 

An airborne remote sensing campaign was performed in rural environment over water 

transportation means for detecting leaks. Hyperspectral and thermal cameras were operated for 

getting spectral images encompassing VNIR, SWIR and TIR spectral bands. The best results were 

obtained by applying the triangle method fusing a thermal infrared image and a vegetation index 

image build upon two VNIR images. The contrast observed in the SWIR-based index images was 

lower and it sometimes showed an unexpected sign change. Further work will be devoted to 

establish a quantitative correlation between the water-index signature and the actual leak flow. 

Spectrally optimized optical sensors will be operated onboard a small plane and a UAV. In the 

future, the application of this approach could be considered in urban areas as well. Due to a large 

part of impervious surfaces (roads, pavements), their impact on the thermal manifestation of 

underground leaks should be specifically addressed. 
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